题目内容

已知复数是虚数单位).
(1)若复数在复平面上对应点落在第一象限,求实数的取值范围;
(2)若虚数是实系数一元二次方程的根,求实数值.

(1);(2).

解析试题分析:(1)先算出,再根据在复平面上对应的点落在第一象限,可得不等式组,从中求解即可得出的取值范围;(2)根据实系数的一元二次方程有一复数根时,则该方程的另一个根必为,且,从而可先求解出的值,进而求出的值.
(1)由条件得       2分
因为在复平面上对应点落在第一象限,故有           4分
解得                  6分
(2)因为虚数是实系数一元二次方程的根,所以也是该方程的一个根
根据二次方程根与系数的关系可得,即         10分
代入,则                11分
所以                            14分.
考点:1.复数的几何意义;2.实系数的一元二次方程在复数范围内根与系数的关系;3.复数的运算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网