题目内容
已知复数z=(2+i)m2--2(1-i).当实数m取什么值时,复数z是:
(1)虚数;(2)纯虚数;(3)复平面内第二、四象限角平分线上的点对应的复数?
(1) m≠2且m≠1时,z为虚数;(2)m=-时,z为纯虚数;(3) m=0或m=2时, z为复平面内第二、四象限角平分线上的点对应的复数.
解析试题分析:(1)复数z可表示为z=(2+i)m2﹣2(1﹣i)=2m2﹣2+(m2+2)i.只需令m2+2≠0即可;(2)只需2m2﹣2=0,且m2+2≠0即可;(3)只需2m2﹣2=﹣(m2+2)即可.
试题解析:由于m∈R,复数z可表示为z=(2+i)m2-3m(1+i)-2(1-i)=(2m2-3m-2)+(m2-3m+2)i.
(1)当m2-3m+2≠0,即m≠2且m≠1时,z为虚数.(3分)
(2)当即m=-时,z为纯虚数.(3分)
(3)当2m2-3m-2=-(m2-3m+2),即m=0或m=2时,z为复平面内第二、四象限角平分线上的点对应的复数.(4分)
考点:复数的基本概念.
练习册系列答案
相关题目