题目内容
【题目】已知圆C过定点,且与直线相切,圆心C的轨迹为E,曲线E与直线l:()相交于A,B两点.
(1)求曲线E的方程;
(2)当的面积等于时,求k的值.
【答案】(1);(2)
【解析】
(1)点C到定点和直线的距离相等,可知点C的轨迹是抛物线,求出方程即可;
(2)设直线l与x轴交于点N,可得,设,,可得,然后将直线与抛物线方程联立并消去,结合根与系数关系,可求得,进而可得到的面积表达式,令其等于,可求出k的值.
(1)由题意,点C到定点和直线的距离相等,故点C的轨迹是抛物线,为焦点,为准线,故E的方程为.
(2)将直线方程与抛物线方程联立,消去x,整理得.设,,
由根与系数关系,.
设直线l与x轴交于点N,则.
所以.
因为,所以.
故,
解得.
练习册系列答案
相关题目