题目内容
【题目】如图所示,底面为正方形的四棱锥P-ABCD中,AB=2,PA=4,PB=PD=,AC与BD相交于点O,E为PD中点.
(1)求证:EO//平面PBC;
(2)设线段BC上点F满足CF=2BF,求锐二面角E-OF-C的余弦值.
【答案】(1)见解析(2)
【解析】
(1)利用三角形中位线证得,进而证得平面.(2)建立空间直角坐标系后,通过平面和平面的法向量,计算出二面角的余弦值.
(1)因为为与交点,且是正方形,所以为中点,因为为的中点,所以,平面,平面,所以平面.
(2)因为,所以,所以,所以平面,因为是正方形,所以,分别以为轴的正方向建立空间直角坐标系.则,.,设平面的法向量为,则,令,则,所以.因为平面,所以平面的法向量可以取,所以.所以锐二面角的余弦值为.
练习册系列答案
相关题目