题目内容

(本小题满分12分)
数列{an}的前n项和为Sn,且a1=aSn+1=2Sn+n+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a=1时,若设数列{bn}的前n项和Tnn∈N*,证明Tn<2。
解:
(Ⅰ)由Sn+1=2Sn+n+1      ①得
        ②
①—②得

故 an+1=2an +1。(n≥2)···············································(2分)
又 an+1+1=2(an+1),
所以
故数列{an+1}是从第2项其,以a2+1为首项,公比为2的等比数列。
又 S2=2S1+1+1,a1=a,所以a2=a+2。
故 an=(a+3)·2n-2-1(n≥2).
a1=a不满足an=(a+3)·2n-2-1,
所以    ····································6分
(Ⅱ)由a1=1,得an==2n-1,n∈N*,则

    ①
      ②
①—②得


所以 ································12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网