题目内容
(本小题满分12分)
数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a=1时,若设数列{bn}的前n项和Tn,n∈N*,证明Tn<2。
数列{an}的前n项和为Sn,且a1=a,Sn+1=2Sn+n+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a=1时,若设数列{bn}的前n项和Tn,n∈N*,证明Tn<2。
解:
(Ⅰ)由Sn+1=2Sn+n+1 ①得
②
①—②得
故 an+1=2an +1。(n≥2)···············································(2分)
又 an+1+1=2(an+1),
所以
故数列{an+1}是从第2项其,以a2+1为首项,公比为2的等比数列。
又 S2=2S1+1+1,a1=a,所以a2=a+2。
故 an=(a+3)·2n-2-1(n≥2).
又a1=a不满足an=(a+3)·2n-2-1,
所以 ····································6分
(Ⅱ)由a1=1,得an==2n-1,n∈N*,则
又 ①
得 ②
①—②得
故
所以 ································12分
(Ⅰ)由Sn+1=2Sn+n+1 ①得
②
①—②得
故 an+1=2an +1。(n≥2)···············································(2分)
又 an+1+1=2(an+1),
所以
故数列{an+1}是从第2项其,以a2+1为首项,公比为2的等比数列。
又 S2=2S1+1+1,a1=a,所以a2=a+2。
故 an=(a+3)·2n-2-1(n≥2).
又a1=a不满足an=(a+3)·2n-2-1,
所以 ····································6分
(Ⅱ)由a1=1,得an==2n-1,n∈N*,则
又 ①
得 ②
①—②得
故
所以 ································12分
略
练习册系列答案
相关题目