题目内容
【题目】已知动点到定直线:的距离比到定点的距离大2.
(1)求动点的轨迹的方程;
(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与曲线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.
【答案】(1)(2)
【解析】分析:(1)利用抛物线定义即可求得抛物线方程;
(2)假设存在满足条件的点M(m,0)(m>0),直线l:x=ty+m,有,y2﹣8ty﹣8m=0,设A(x1,y1),B(x2,y2),利用韦达定理弦长公式,化简求解即可.
详解: (1)设点的坐标为,因为动点到定直线:的距离比到定点的距离大2,所以且,
化简得,所以轨迹的方程为.
(2)假设存在满足条件的点(),直线:,
有 ,
设,,有,,
,,
,
据题意,为定值,则,
于是,则有解得,
故当时,为定值,所以.
练习册系列答案
相关题目
【题目】某高三理科班共有名同学参加某次考试,从中随机挑出名同学,他们的数学成绩与物理成绩如下表:
数学成绩 | |||||
物理成绩 |
(1)数据表明与之间有较强的线性关系,求关于的线性回归方程;
(2)本次考试中,规定数学成绩达到分为优秀,物理成绩达到分为优秀.若该班数学优秀率与物理优秀率分别为和,且除去抽走的名同学外,剩下的同学中数学优秀但物理不优秀的同学共有人,请写出列联表,判断能否在犯错误的概率不超过的前提下认为数学优秀与物理优秀有关?
参考数据:,;,;