题目内容
【题目】已知函数.
(I)若在处取得极值,求过点且与在处的切线平行的直线方程;
(II)当函数有两个极值点,且时,总有成立,求实数的取值范围.
【答案】(Ⅰ)
【解析】
(Ⅰ)求导函数,利用极值点必为f′(x)=0的根,求出a的值,可得斜率,利用点斜式写出方程即可.
(II)由题意得u(x)=2x2﹣8x+a=0在(0,+∞)上有两个不等正根,可得a的范围,利用根与系数的关系将中的a,都用表示,构造函数,对m分类讨论,利用导数研究其单调性即可得出.
(Ⅰ)由已知知,,点,所以所求直线方程为.
(Ⅱ)定义域为,令,由有两个极值点得有两个不等的正根,所以,
所以由知
不等式等价于
,即
时,时
令,
当时,,所以在上单调递增,又,
所以时,;时,
所以,不等式不成立
当时,令
(i)方程的即时所以在上单调递减,又,
当时,,不等式成立
当时,,不等式成立
所以时不等式成立
(ii)当即时,对称轴开口向下且,令则在上单调递增,又, ,时不等式不成立,综上所述,则
【题目】某大型高端制造公司为响应(中国制造2025)中提出的坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,准备加大产品研发投资,下表是该公司2017年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:
月份 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
研发费用(百万元) | 2 | 3 | 6 | 10 | 21 | 13 | 15 | 18 |
产品销量(万台) | 1 | 1 | 2 | 2.5 | 6 | 3.5 | 3.5 | 4.5 |
(1)根据数据可知与 之间存在线性相关关系.
(i)求出关于的线性回归方程(系数精确到0.001);
(ii)若2018年6月份研发投人为25百万元,根据所求的线性回归方估计当月产品的销量;
(2)为庆祝该公司9月份成立30周年,特制定以下奖励制度:以(单位:万台)表示日销量,,则每位员工每日奖励200元;,则每位员工每日奖励300元;,则每位员工每日奖励400元.现已知该公司9月份日销量(万台)服从正态分布,请你计算每位员工当月(按30天计算)获得奖励金额总数大约多少元
参考数据:.
参考公式:对于一组数据.其回归直线的斜率和截距的最小二乘估计分别为
若随机变量服从正态分布,则.