题目内容
8.已知函数f(x)=ax3-3x的图象过点(-1,2),则a=1.分析 根据函数图象和点的坐标之间的关系进行求解.
解答 解:∵函数f(x)=ax3-3x的图象过点(-1,2),
∴f(-1)=-a+3=2,
解得a=1,
故答案为:1
点评 本题主要考查点的坐标与函数之间的关系,比较基础.
练习册系列答案
相关题目
19.以下四个数是数列{n(n+2)}的项的是 ( )
A. | 98 | B. | 99 | C. | 100 | D. | 101 |
16.设ξ~B(18,p),又E(ξ)=9,则p的值为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
3.应试教育下的高三学生身体素质堪忧,教育部门对某市100名高三学生的课外体育锻炼时间进行调查.他们的课外体育锻炼时间及相应的频数如下表:
将学生日均课外体育运动时间在$[\frac{2}{3},1)$上的学生评价为“课外体育达标”.
(1)根据已知条件完成下面的2×2列联表:
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“课外体育达标”与性别有关?
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
运动时间 (单位:小时) | $[0,\frac{1}{6})$ | $[\frac{1}{6},\frac{1}{3})$ | $[\frac{1}{3},\frac{1}{2})$ | $[\frac{1}{2},\frac{2}{3})$ | $[\frac{2}{3},\frac{5}{6})$ | $[\frac{5}{6},1)$ |
总人数 | 10 | 18 | 22 | 25 | 20 | 5 |
(1)根据已知条件完成下面的2×2列联表:
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据 | 当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联; |
当Χ2>2.706时,有90%的把握判定变量A,B有关联; | |
当Χ2>3.841时,有95%的把握判定变量A,B有关联; | |
当Χ2>6.635时,有99%的把握判定变量A,B有关联. |