题目内容
【题目】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=( )
A.﹣
B.﹣
C.
D.2
【答案】A
【解析】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),
故圆心到直线ax+y﹣1=0的距离d= =1,
解得:a= ,
故选:A.
【考点精析】认真审题,首先需要了解点到直线的距离公式(点到直线的距离为:),还要掌握圆的一般方程(圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显)的相关知识才是答题的关键.
练习册系列答案
相关题目