题目内容
19.抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是( )A. | $\frac{1}{2010}$ | B. | $\frac{1}{2011}$ | C. | $\frac{2010}{2011}$ | D. | $\frac{1}{2}$ |
分析 简化模型,只考虑第2010次出现的结果,有两种结果,第2010次出现正面朝上只有一种结果,即可求
解答 解:抛掷一枚质地均匀的硬币,只考虑第2010次,有两种结果:正面朝上,反面朝上,每中结果等可能出现,故所求概率为$\frac{1}{2}$.
故选:D.
点评 本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.
练习册系列答案
相关题目
9.已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为( )
A. | 512 | B. | 256 | C. | 255 | D. | 254 |
10.设变量x,y满足约束条件$\left\{{\begin{array}{l}x-y≤0\\ x+y<1\\ 2x+y≥1\end{array}}\right.$,则目标函数z=-2y-3x的( )
A. | 最大值为$-\frac{5}{3}$,最小值为$-\frac{5}{2}$ | B. | 最大值为$-\frac{5}{3}$,最小值不存在 | ||
C. | 最大值为-2,最小值不存在 | D. | 最大值不存在,最小值为$-\frac{5}{2}$ |
11.△ABC内接于以O为圆心,1为半径的圆,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则△AOB的面积=( )
A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | 1 | D. | $\frac{1}{2}$ |
8.已知正三棱锥P-ABC,点P、A、B、C都在半径为$\sqrt{3}$的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的距离为( )
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |