题目内容

17.如图,在边长为2的正方体ABCD-A1B1C1D1中,P、Q分别为棱AB、A1D1的中点,M、N分别为面BCC1B1和DCC1D1上的点,一质点从点P射向点M,遇正方体的面反射(反射服从光的反射原理),反射到点N,再经平面反射,恰好反射至点Q,则三条线段PM、MN、NQ的长度之和为(  )
A.$\sqrt{22}$B.$\sqrt{21}$C.2$\sqrt{5}$D.3$\sqrt{2}$

分析 作点P关于平面BCC1B1的对称点P1,再作Q关于平面DCC1D1的对称点Q1,连接P1Q1,根据勾股定理即可求得长度之和.

解答 解:作点P关于平面BCC1B1的对称点P1,再作Q关于平面DCC1D1的对称点Q1,连接P1Q1,这就是光线所经过的等效路径,
其长度就是PM,MN,NQ三条线段的长度之和,
根据勾股定理:|P1Q1|2=(A1Q12+(AA12+(AP12=32+22+32=22,
可得|P1Q1|=$\sqrt{22}$,
故选:A.

点评 本题考查了正方体的几何性质,光的反射原理,对称性问题,化折线为直线求解线段的长度,题目很新颖,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网