题目内容
【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).
(1)若圆C1与圆C2相交于A,B两点,且|AB|=,求点C1到直线AB的距离;
(2)若圆C1与圆C2相内切,求圆C2的方程.
【答案】(1).(2)(x-2)2+(y-1)2=12+8.
【解析】
(1) 知直线C1C2垂直平分公共弦AB.设直线AB与C1C2的交点为P,再解直角三角形得到
点C1到直线AB的距离.(2) 由两圆相内切得|C1C2|=|r1-r2|求出r2=2+2,即得圆
C2的方程.
(1)由题设,易知直线C1C2垂直平分公共弦AB.设直线AB与C1C2的交点为P,
则在Rt△APC1中,
∵|AC1|=2,|AP|=|AB|=,
∴点C1到直线AB的距离为|C1P|=.
(2)由题设得,圆C1的圆心为C1(0,-1),半径为r1=2.
设圆C2的半径为r2,则由两圆相内切得|C1C2|=|r1-r2|=|2-r2|,
解得r2=2+2或r2=2-2 (舍去).
故所求圆C2的方程为(x-2)2+(y-1)2=12+8.
练习册系列答案
相关题目