题目内容
【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为( , ),直线l的极坐标方程为ρcos(θ﹣ )=a,且点A在直线l上,
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 (α为参数),试判断直线l与圆C的位置关系.
【答案】
(1)解:点A( , )在直线l上,得 cos(θ﹣ )=a,∴a= ,
故直线l的方程可化为:ρsinθ+ρcosθ=2,
得直线l的直角坐标方程为x+y﹣2=0
(2)解:消去参数α,得圆C的普通方程为(x﹣1)2+y2=1
圆心C到直线l的距离d= <1,
所以直线l和⊙C相交
【解析】(1)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;(2)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.
练习册系列答案
相关题目