题目内容

【题目】已知函数 是[1,∞]上的增函数.当实数m取最大值时,若存在点Q,使得过Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q的坐标为(
A.(0,﹣3)
B.(0,3)
C.(0,﹣2)
D.(0,2)

【答案】C
【解析】解:由 得g′(x)=x2+1﹣
∵g(x)是[1,+∞)上的增函数,∴g′(x)≥0在[1,+∞)上恒成立,即x2+1﹣ ≥0在[1,+∞)上恒成立.
设x2=t,∵x∈[1,+∞),∴t∈[1,+∞),即不等式t+1﹣ ≥0在[1,+∞)上恒成立.
设y=t+1﹣ ,t∈[1,+∞),
∵y′=1+ >0,
∴函数y=t+1﹣ 在[1,+∞)上单调递增,因此ymin=2﹣m.
∵ymin≥0,∴2﹣m≥0,即m≤2.又m>0,故0<m≤2.m的最大值为2.
故得g(x)= x3+x﹣2+ ,x∈(﹣∞,0)∪(0,+∞).
将函数g(x)的图象向上平移2个长度单位,所得图象相应的函数解析式为φ(x)= x3+2x+ ,x∈(﹣∞,0)∪(0,+∞).
由于φ(﹣x)=﹣φ(x),
∴φ(x)为奇函数,
故φ(x)的图象关于坐标原点成中心对称.
由此即得函数g(x)的图象关于点Q(0,﹣2)成中心对称.
这表明存在点Q(0,﹣2),使得过点Q的直线若能与函数g(x)的图象围成两个封闭图形,则这两个封闭图形的面积总相等.
故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网