题目内容
【题目】已知函数
(Ⅰ)若函数的图像在点处的切线与直线平行,求实数的值;
(Ⅱ)讨论函数的单调性;
(Ⅲ)若在函数定义域内,总有成立,试求实数的最大值.
【答案】(Ⅰ) ;(Ⅱ)证明见解析;(Ⅲ)
【解析】试题分析:(1)先根据导数几何意义得,解得实数的值;(2)求导数并分解因式,根据a与1的大小分类讨论导函数符号,根据导函数符号确定函数的单调性;(3)先化简不等式,并根据不等式恒成立转化为对应函数最值问题: 最大值不大于零,再利用导数求得函数最值
从而有的最大值,最后利用导数求得最大值,即得实数的最大值.
试题解析:(Ⅰ)易得,且
由题意,得,解得,
(Ⅱ)由(Ⅰ)得,
①当时, , 函数在单调递减,
②当时,由,得;
由,得或
函数在上单调递增,在上单调递减.
③当时,同理,得
函数在上单调递增,在上单调递减,
综上,当时,函数在单调递减;
当时,函数在上单调递增,在上单调递减;
当时,函数在上单调递增,在上单调递减.
(Ⅲ)由题意,知恒成立,
恒成立,
恒成立,
令,则只需
,
由,得,
当时, ,此时,函数在上单调递减;
当时, ,此时,函数在上单调递减,
令,则只需
由,得,此时, 在上单调递减,
由,得,此时, 在上单调递减,
,
即
故所求实数的最大值为
【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数(份)与收入(元)之间有如下的对应数据:
外卖份数(份) | 2 | 4 | 5 | 6 | 8 |
收入(元) | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:①参考公式:线性回归方程系数公式, ;
②参考数据: , , .
【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数(份)与收入(元)之间有如下的对应数据:
外卖份数(份) | 2 | 4 | 5 | 6 | 8 |
收入(元) | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:①参考公式:线性回归方程系数公式, ;
②参考数据: , , .