题目内容
7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( )A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
分析 由题意,a=2b,再用平方关系算得c=$\sqrt{3}$b,最后利用椭圆离心率公式可求出椭圆的离心率.
解答 解:∵椭圆的长轴长是短轴长的2倍,
∴2a=2×2b,得a=2b,
又∵a2=b2+c2,
∴4b2=b2+c2,可得c=$\sqrt{3}$b,
因此椭圆的离心率为e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.
故选:C.
点评 本题给出椭圆长轴与短轴的倍数关系,求椭圆的离心率,考查了椭圆的基本概念和简单性质的知识,属于基础题.
练习册系列答案
相关题目
18.已知点P在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,F1F2分别是其左、右焦点,若|PF1|=2|PF2|,则该椭圆的离心率的取值范围是( )
A. | (0,$\frac{1}{3}$] | B. | ($\frac{1}{3}$,1) | C. | (0,$\frac{1}{3}$) | D. | [$\frac{1}{3}$,1) |
19.已知直线l:x-y+m=0与椭圆C:$\frac{{x}^{2}}{2}$+y2=1交于不同的两点A,B,且线段AB的中点不在圆x2+y2=$\frac{5}{9}$内,则m的取值范围为( )
A. | m≥1或m≤-1 | B. | -$\sqrt{3}$≤m≤-1或1≤≤m≤$\sqrt{3}$ | C. | -1≤m≤1 | D. | -$\sqrt{3}$<m≤-1或1≤m<$\sqrt{3}$ |
17.下列命题错误的是( )
A. | 命题“?x∈R,x2-x+1≥$\frac{3}{4}$”的否定是“?x0∈R,x02-x0+1<$\frac{3}{4}$” | |
B. | 命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0” | |
C. | 命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0” | |
D. | 若命题“非p”与命题“p或q”都是真命题,那么q一定是假命题 |