题目内容
18.已知点P在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,F1F2分别是其左、右焦点,若|PF1|=2|PF2|,则该椭圆的离心率的取值范围是( )A. | (0,$\frac{1}{3}$] | B. | ($\frac{1}{3}$,1) | C. | (0,$\frac{1}{3}$) | D. | [$\frac{1}{3}$,1) |
分析 由椭圆的第二定义结合|PF1|=2|PF2|,可得 e(x+$\frac{{a}^{2}}{c}$)=2•e($\frac{{a}^{2}}{c}$-x),解得x=$\frac{a}{3e}$,由题意可得-a≤$\frac{a}{3e}$≤a,解不等式求得离心率e的取值范围.
解答 解:设点P的横坐标为x,∵|PF1|=2|PF2|,则由椭圆的定义可得 e(x+$\frac{{a}^{2}}{c}$)=2•e($\frac{{a}^{2}}{c}$-x),
∴x=$\frac{a}{3e}$,由题意可得-a≤$\frac{a}{3e}$≤a,
∴$\frac{1}{3}$≤e<1,则该椭圆的离心率e的取值范围是[$\frac{1}{3}$,1),
故选:D.
点评 本题考查椭圆的第二定义,考查椭圆的简单性质的应用,灵活运用椭圆第二定义是解答该题的关键,是中档题.
练习册系列答案
相关题目
10.变量x,y的散点图如图所示,那么x,y之间的样本相关系数r最接近的值为( )
A. | 1 | B. | -0.5 | C. | 0 | D. | 0.5 |
9.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的四个顶点按逆时针排列顺序依次为A,B,C,D,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率e2为( )
A. | $\frac{{3-\sqrt{5}}}{2}$ | B. | $\frac{{3+\sqrt{5}}}{8}$ | C. | $\frac{{\sqrt{5}-1}}{2}$ | D. | $\frac{{1+\sqrt{5}}}{8}$ |
6.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,双曲线C2的方程为$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则C2的渐近线方程为( )
A. | $\sqrt{2}$x±y=0 | B. | x±$\sqrt{2}$y=0 | C. | 2x±y=0 | D. | x±2y=0 |
13.已知A为椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的一个动点,直线AB,AC分别过焦点,F1,F2,且与椭圆交于B,C两点,若当AC⊥x轴时,恰好有|AF1|:|AF2|=3:1,则该椭圆的离心率为( )
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{3}$ |
7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( )
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |