题目内容
已知函数f(x)=ax2-|x|+2a-1(a为实常数).
(1)若a=1,作函数f(x)的图象;
(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设h(x)=
,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.
(1)若a=1,作函数f(x)的图象;
(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设h(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814604474.png)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408146364726.jpg)
(2)g(a)=
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814667496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408146364726.jpg)
(2)g(a)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408146671794.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814667496.png)
(1)当a=1时,f(x)=x2-|x|+1=
作图如下.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408147924724.jpg)
(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.
若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.
若a≠0,则f(x)=a
+2a-
-1,f(x)图象的对称轴是直线x=
.
当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.
当0<
<1,即a>
时,f(x)在区间[1,2]上是增函数,g(a)=f(1)=3a-2.
当1≤
≤2,即
≤a≤
时,g(a)=f
=2a-
-1.
当
>2,即0<a<
时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.
综上可得g(a)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408146671794.png)
(3)当x∈[1,2]时,h(x)=ax+
-1,在区间[1,2]上任取x1、x2,且x1<x2,
则h(x2)-h(x1)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408149941284.png)
=(x2-x1)
=(x2-x1)
.
因为h(x)在区间[1,2]上是增函数,所以h(x2)-h(x1)>0.
因为x2-x1>0,x1x2>0,所以ax1x2-(2a-1)>0,
即ax1x2>2a-1.
当a=0时,上面的不等式变为0>-1,即a=0时结论成立.
当a>0时,x1x2>
,由1<x1x2<4,得
≤1,解得0<a≤1.
当a<0时,x1x2<
,由1<x1x2<4,得
≥4,解得-
≤a<0.
所以实数a的取值范围为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814667496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408146821017.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408147924724.jpg)
(2)当x∈[1,2]时,f(x)=ax2-x+2a-1.
若a=0,则f(x)=-x-1在区间[1,2]上是减函数,g(a)=f(2)=-3.
若a≠0,则f(x)=a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814792812.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814807399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814823414.png)
当a<0时,f(x)在区间[1,2]上是减函数,g(a)=f(2)=6a-3.
当0<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814823414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814854338.png)
当1≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814823414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814870303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814854338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814901654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814807399.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814823414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814870303.png)
综上可得g(a)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408146671794.png)
(3)当x∈[1,2]时,h(x)=ax+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814963517.png)
则h(x2)-h(x1)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408149941284.png)
=(x2-x1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040815010861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040815026799.png)
因为h(x)在区间[1,2]上是增函数,所以h(x2)-h(x1)>0.
因为x2-x1>0,x1x2>0,所以ax1x2-(2a-1)>0,
即ax1x2>2a-1.
当a=0时,上面的不等式变为0>-1,即a=0时结论成立.
当a>0时,x1x2>
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040815041476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040815041476.png)
当a<0时,x1x2<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040815041476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040815041476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814854338.png)
所以实数a的取值范围为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040814667496.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目