题目内容
【题目】已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.
(1)求抛物线的方程及点的坐标;
(2)求的最大值.
【答案】(1),;(2)9.
【解析】
(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;
(2)设直线l的方程为:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.
(1)∵点F是抛物线y2=2px(p>0)的焦点,P(2,y0)是抛物线上一点,|PF|=3,
∴23,
解得:p=2,
∴抛物线C的方程为y2=4x,
∵点P(2,n)(n>0)在抛物线C上,
∴n2=4×2=8,
由n>0,得n=2,∴P(2,2).
(2)∵F(1,0),∴设直线l的方程为:x+my﹣1=0,
代入y2=4x,整理得,y2+4my﹣4=0
设A(x1,y1),B(x2,y2),
则y1,y2是y2+4my﹣4=0的两个不同实根,
∴y1+y2=﹣4m,y1y2=﹣4,
x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,
x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,
(),(x2﹣2,),
(x1﹣2)(x2﹣2)+()()
=x1x2﹣2(x1+x2)+4
=1﹣4﹣8m2+4﹣4+8m+8
=﹣8m2+8m+5
=﹣8(m)2+9.
∴当m时,取最大值9.
练习册系列答案
相关题目