题目内容
【题目】在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点.
(Ⅰ)写出曲线的直角坐标方程和直线的普通方程;
(Ⅱ)若,求的值.
【答案】(1) , (2) 的值为1
【解析】试题分析:(1)利用直角方程与极坐标方程的互化公式即可把曲线C的极坐标方程化为直角坐标方程,消去参数t就可得到直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义即可求出 ,从而建立关于a的一元二次方程,求出a的值。
试题解析(1)由得
∴曲线的直角坐标方程为,直线的普通方程为
(2)将直线的参数方程代入曲线的直角坐标方程中,
得;设两点对应的参数分别为
则有 ∵,∴即
∴即,解之得: 或者(舍去),∴的值为1。
练习册系列答案
相关题目