题目内容

已知数列{an}满足:an=logn+1(n+2)(n∈N*),定义使a1•a2•a3…ak为整数的数k(k∈N*)叫做企盼数,则区间[1,2013]内所有的企盼数的和为(  )
A.1001B.2026C.2030D.2048
∵an=logn+1(n+2)=
log2(n+2)
log2(n+1)
,(n∈N*),
∴a1•a2•a3…ak=
log23
log22
log24
log23
log25
log24
log2(k+2)
log2k
=log2(k+2),
又∵a1•a2•a3…ak为整数,
∴k+2必须是2的n次幂(n∈N*),即k=2n-2;
又k∈[1,2013],∴1≤2n-2≤2013,∴取2≤n≤10;
∴区间[1,2013]内所有的企盼数的和为:
M=(22-2)+(23-2)+(24-2)+…+(210-2)=
22-211
1-2
-2×9=2026;
故选:B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网