题目内容

在等差数列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm
(I)∵数列{an}是等差数列
∴a3+a4+a5=3a4=84,
∴a4=28
设等差数列的公差为d
∵a9=73
d=
a9-a4
9-4
=
73-28
5
=9
由a4=a1+3d可得28=a1+27
∴a1=1
∴an=a1+(n-1)d=1+9(n-1)=9n-8
(II)若9man92m
则9m+8<9n<92m+8
因此9m-1+1≤n≤92m-1
故得bm=92m-1-9m-1
∴Sm=b1+b2+…+bm
=(9+93+95+…+92m-1)-(1+9+…+9m-1
=
9(1-81m)
1-81
-
1-9m
1-9

=
92m+1-10×9m+1
80
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网