题目内容

【题目】已知直线的参数方程是是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)判断直线与曲线的位置关系;

(2)过直线上的点作曲线的切线,求切线长的最小值.

【答案】(1)相离;(2).

【解析】试题分析:(1)利用加减消元法消去,可得直线的方程为.将圆的极坐标方程展开后两边成立,转化为直角坐标方程为.利用圆心到直线的距离判断出直线和圆相离.(2)利用直线的参数方程,得到直线上任意一点的坐标,利用勾股定理求出切线长,最后利用配方法求得最小值.

试题解析:

(1)由直线的参数方程消去参数的方程为.

曲线的直角坐标方程为

.

圆心到直线的距离为

直线与圆的相离.

(2)直线上的点向圆引切线,则切线长为

即切线长的最小值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网