ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒCÉÏÈÎÒâÒ»µãµ½Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍ¶¼Îª4£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÍÖÔ²½»ÓÚP¡¢Q£¬OΪ×ø±êԵ㣬Èô¡ÏPOQ=90¡ã£¬ÇóÖ¤$\frac{1}{|PQ{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$Ϊ¶¨Öµ£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÇóµÃÍÖÔ²³¤°ëÖ᳤£¬½áºÏÀëÐÄÂÊÇóµÃ°ë½¹¾à£¬ÔÙÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Éè³öÖ±ÏßOPµÄ·½³Ìy=kx£¬ºÍÍÖÔ²ÁªÁ¢Çó³öPµÄ×ø±ê£¬µÃµ½|OP|2£¬ÔÙÓÉOP¡ÍOQд³öOQ·½³Ì£¬ºÍÍÖÔ²ÁªÁ¢Çó³öQ×ø±ê£¬µÃµ½|OQ|2£¬´úÈë$\frac{1}{|PQ{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$ºóÕûÀí¿ÉµÃÆäΪ¶¨Öµ£®
½â´ð £¨¢ñ£©½â£ºÓÉÌâÒâ¿ÉµÃ£º2a=4£¬a=2£¬ÓÖ$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬c=$\sqrt{3}$£¬Ôò$b=\sqrt{{a}^{2}-{c}^{2}}=1$£¬
¡àÍÖÔ²µÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨¢ò£©Ö¤Ã÷£ºÉèP£¨x1£¬y1£©£¬
Èôk´æÔÚ£¬ÉèÖ±ÏßOPµÄ·½³ÌΪl1£ºy=kx£¬
´úÈë$\frac{{x}^{2}}{4}+{y}^{2}=1$£¬µÃ${{x}_{1}}^{2}=\frac{4}{1+4{k}^{2}}£¬{{y}_{1}}^{2}=\frac{4{k}^{2}}{1+4{k}^{2}}$£¬
¼´$|OP{|}^{2}={{x}_{1}}^{2}+{{y}_{1}}^{2}=\frac{4£¨1+{k}^{2}£©}{1+4{k}^{2}}$£¬
¡ß¡ÏPAQ=90¡ã£¬ÒÔ$-\frac{1}{k}$´ú»»ÉÏʽµÄkµÃ£¬$|OQ{|}^{2}=\frac{4£¨1+{k}^{2}£©}{4+{k}^{2}}$£¬
¡à$\frac{1}{|PQ{|}^{2}}+\frac{1}{|OQ{|}^{2}}=\frac{1+4{k}^{2}}{4£¨1+{k}^{2}£©}+\frac{4+{k}^{2}}{4£¨1+{k}^{2}£©}$=$\frac{5£¨1+{k}^{2}£©}{4£¨1+{k}^{2}£©}=\frac{5}{4}$£®
Èôk²»´æÔÚ£¬¼´P¡¢Q·Ö±ðÊÇÍÖÔ²³¤¡¢¶ÌÖáµÄ¶¥µã£¬|OP|2=4£¬|OQ|2=1£®
Ôò$\frac{1}{|PQ{|}^{2}}+\frac{1}{|OQ{|}^{2}}=\frac{5}{4}$£®
×ÛÉÏ£º$\frac{1}{|PQ{|}^{2}}+\frac{1}{|OQ{|}^{2}}=\frac{5}{4}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éÁËÁ½µã¼äµÄ¾àÀ빫ʽ£¬ÊÇÖеµÌ⣮
A£® | $\frac{3}{10}$ | B£® | $\frac{1}{5}$ | C£® | $\frac{2}{5}$ | D£® | $\frac{1}{2}$ |