ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãÓëÁ½¸ö½¹µã¹¹³ÉµÄÈý½ÇÐεÄÃæ»ýΪ2£¬Ö±Ïßl£ºy=kx+m£¨m¡Ù0£©ÓëÍÖÔ²½»Ó벻ͬµÄÁ½µãA£¬B£¨1£©ÇóÍÖÔ²CµÄ·½³Ì
£¨2£©ÈôÏ߶ÎABÖеãµÄºá×ø±êΪ$\frac{m}{2}$£¬ÇókµÄÖµ
£¨3£©ÈôÒÔÏÒABΪֱ¾¶µÄÔ²¾¹ýÍÖÔ²µÄÓÒ¶¥µãM£¬ÔòÖ±ÏßlÊÇ·ñ¾¹ý¶¨µã£¨³ýÓÒ¶¥µãÍ⣩£¿Èô¾¹ý£¬Çó³ö¶¨µã×ø±ê£¬·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍÈý½ÇÐεÄÃæ»ý¹«Ê½¼°a£¬b£¬cµÄ¹Øϵ£¬¼ÆËã¼´¿ÉµÃµ½a£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬¿ÉµÃxµÄ·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½k£»
£¨3£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÔ²µÄÐÔÖÊ£¬ÒÔ¼°´¹Ö±µÄÌõ¼þ£¬»¯¼òÕûÀí£¬½áºÏÖ±Ïߺã¹ý¶¨µãµÄÇ󷨣¬¼´¿ÉµÃµ½¶¨µã£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬e=$\frac{\sqrt{2}}{2}$£¬¼´$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬ÓÖbc=2£¬
a2-b2=c2£¬
½âµÃa=2£¬b=$\sqrt{2}$£¬
¼´ÓÐÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨2£©½«y=kx+m´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬£¨1+2k2£©x2+4kmx+2m2-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÓÐx1+x2=$\frac{-4km}{1+2{k}^{2}}$£¬
ÓÉÖеã×ø±ê¹«Ê½¿ÉµÃ$\frac{-2km}{1+2{k}^{2}}$=$\frac{m}{2}$£¬
½âµÃk=-1¡À$\frac{\sqrt{2}}{2}$£»
£¨3£©ÓÉ£¨2£©¿ÉµÃ¡÷=£¨4km£©2-4£¨1+2k2£©£¨2m2-4£©£¾0
ÕûÀíµÃ£º4k2-m2+2£¾0 ¢Ù
x1+x2=$\frac{-4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-4}{1+2{k}^{2}}$£¬
ÓÉÒÑÖª£¬AM¡ÍMB£¬ÇÒÍÖÔ²µÄÓÒ¶¥µãΪM£¨2£¬0£©
¡à£¨x1-2£©£¨x2-2£©+y1y2=0
¼´£¨1+k2£©x1x2+£¨km-2£©£¨x1+x2£©+m2+4=0
Ò²¼´£¨1+k2£©•$\frac{2{m}^{2}-4}{1+2{k}^{2}}$+£¨km-2£©•$\frac{-4km}{1+2{k}^{2}}$+m2+4=0£¬
ÕûÀíµÃ£º3m2+8mk+4k2=0£¬
½âµÃ£ºm=-2k»òm=-$\frac{2}{3}$k£¬¾ùÂú×ã¢Ù
µ±m=-2kʱ£¬Ö±ÏßlµÄ·½³ÌΪy=kx-2k£¬¹ý¶¨µã£¨2£¬0£©£¬ÉáÈ¥£®
µ±m=-$\frac{2}{3}$kʱ£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-$\frac{2}{3}$£©£¬¹ý¶¨µã£¨$\frac{2}{3}$£¬0£©£¬
¹ÊÖ±Ïßl¹ý¶¨µã£¬ÇÒ¶¨µãµÄ×ø±êΪ£¨$\frac{2}{3}$£¬0£©£®
µãÆÀ ±¾Ìâ×ۺϿ¼²éÍÖÔ²µÄÐÔÖʼ°Ó¦ÓúÍÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¾ßÓнϴóµÄÔËËãÁ¿£¬½âÌâʱҪעÒâΤ´ï¶¨ÀíµÄÁé»îÔËÓã®
A£® | 3 | B£® | 5 | C£® | 7 | D£® | 9 |
ÈÕÆÚ | 3ÔÂ1ÈÕ | 3ÔÂ2ÈÕ | 3ÔÂ3ÈÕ | 3ÔÂ4ÈÕ | 3ÔÂ5ÈÕ |
βîx £¨¶È£© | 10 | 11 | 13 | 12 | 9 |
·¢Ñ¿Êýy£¨¿Å£© | 15 | 16 | 17 | 14 | 13 |
£¨1£©Çë¸ù¾Ý3ÔÂ1ÈÕÖÁ3ÔÂ5ÈÕµÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì£®¾ÝÆøÏóÔ¤±¨3ÔÂ6ÈÕµÄÖçҹβîΪ11¡æ£¬ÇëÔ¤²â3ÔÂ6ÈÕ½þÅݵÄ30¿ÅÖÖ×ӵķ¢Ñ¿Êý£®£¨½á¹û±£ÁôÕûÊý£©
£¨2£©´Ó3ÔÂ1ÈÕÖÁ3ÔÂ5ÈÕÖÐÈÎÑ¡Á½Ì죬¼ÇÖÖ×Ó·¢Ñ¿Êý³¬¹ý15¿ÅµÄÌìÊýΪX£¬ÇóXµÄ¸ÅÂÊ·Ö²¼ÁУ¬²¢ÇóÆäÊýѧÆÚÍûºÍ·½²î£®
ÓÅÐã | Á¼ºÃ | ºÏ¸ñ | |
ÄÐ | 180 | 70 | 20 |
Å® | 120 | a | 30 |
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÈôÓ÷ֲã³éÑùµÄ·½·¨£¬ÔںϸñµÄͬѧÖа´ÄÐÅ®³éÈ¡Ò»¸öÈÝÁ¿Îª5µÄÑù±¾£¬´ÓÖÐÈÎÑ¡2ÈË£¬¼ÇXΪ³éÈ¡Å®ÉúµÄÈËÊý£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®