题目内容
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示.
假设每名队员每次射击相互独立.
(Ⅰ)求上图中的值;
(Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数的分布列及数学期望(频率当作概率使用);
(Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)
(Ⅰ);(Ⅱ);(Ⅲ)甲队员的射击成绩更稳定
解析试题分析:(Ⅰ)由频率和为1可求的值。(Ⅱ)从图中可以得到击中目标靶的环数不低于8环的概率,队员甲进行三次射击属于独立重复事件,符合二项分布。可根据独立重复事件概率公式求其概率,再根据数学期望公式求其期望值,也可用二项分布列的数学期望公式求其期望值。(Ⅲ)甲队员的射击成绩较集中、波动较小,相对稳定。
试题解析:解:(Ⅰ)由上图可得,
所以. 3分
(Ⅱ)由图可得队员甲击中目标靶的环数不低于8环的概率为
4分
由题意可知随机变量的取值为:0,1,2,3. 5分
事件“”的含义是在3次射击中,恰有k次击中目标靶的环数不低于8环.
8分
即的分布列为
所以的期望是. 10分
(Ⅲ)甲队员的射击成绩更稳定. 13分
考点:二项分布列、数学期望及方差的意义,考查数据处理能力、运算能力。
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位:辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆.
| 轿车A | 轿车B | 轿车C |
舒适型 | 100 | 150 | z |
标准型 | 300 | 450 | 600 |
(2)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个分数.记这8辆轿车的得分的平均数为,定义事件{,且函数没有零点},求事件发生的概率.
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆
| 轿车A | 轿车B | 轿车C |
舒适型 | 100 | 150 | z |
标准型 | 300 | 450 | 600 |
(1)求下表中z的值;
(2)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:94,86,92,96,87,93,90,82把这8辆轿车的得分看作一个总体,从中任取一个得分数 记这8辆轿车的得分的平均数为,定义事件{,且函数没有零点},求事件发生的概率