题目内容
【题目】 由经验得知,在某商场付款处排队等候付款的人数及概率如下表
排队人数 | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
(1)至多有2人排队的概率是多少?
(2)至少有2人排队的概率是多少?
【答案】(1)0.56 (2)0.74
【解析】
(1)“至多2人排队”是“没有人排队”,“1人排队”,“2人排队”三个事件的和事件,三个事件彼此互斥,利用互斥事件的概率公式求出至多2人排队的概率.
(2)“至少2人排队”与“少于2人排队”是对立事件;“少于2人排队”是“没有人排队”,“1人排队”二个事件的和事件,二个事件彼此互斥,利用互斥事件的概率公式求出“少于2人排队”的概率;再利用对立事件的概率公式求出)“至少2人排队”的概率.
(1)记没有人排队为事件A,1人排队为事件B.
2人排队为事件C,A、B、C彼此互斥.
P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56
(2)记至少2人排队为事件D,少于2人排队为事件A+B,那么事件D与A+B是对立事件,则
P(D)=P()=1﹣(P(A)+P(B))=1﹣(0.1+0.16)=0.74.
【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式及数据:,.