题目内容
【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式及数据:,.
【答案】(1)列联表见解析;(2)能;(3).
【解析】
(1)根据已知数据填充2×2列联表.(2)计算,再判断有99%的把握认为成绩与班级有关.(3)利用古典概型求抽到9号或 10号的概率.
(1)
优秀 | 非优秀 | 合计 | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合计 | 30 | 80 | 110 |
(2)
,我们有99%的把握认为成绩与班级有关,达到可靠性要求。
(3)设“抽到9或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y)
所有的基本事件有:(1,1),(1,2),共36个. 事件A包含的基本事件有(3,6),(4,5),(5,4),(6,3),(5,5),(4,6),(6,4)共7个,所以.
【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
总计 |
已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是( )
A. 列联表中的值为30,的值为35
B. 列联表中的值为15,的值为50
C. 根据列联表中的数据,若按的可靠性要求,能认为“成绩与班级有关系”
D. 根据列联表中的数据,若按的可靠性要求,不能认为“成绩与班级有关系”
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.