题目内容

8.从一个有红、橙、黄、绿这四色球的球袋中(每种就一个),随机摸出两个球.
(1)随机摸出2个球,设红球为X,则随机变量X的概率分布为
X01
P0.50.5

(2)求恰好摸出两个球是红色和绿色的概率.

分析 从4球中取出两个的所以可能的情况有(红,橙),(红,黄),(红,绿),(橙,黄)、(橙,绿),(黄,绿)共6种情况.
(1)由题意可知,X=1,0,分布求出每种情况下的概率即可求解分布列
(2)先求出恰好摸出两个球是红色和绿色包含的结果即可求解

解答 解:(1)从4球中取出两个的情况有(红,橙),(红,黄),(红,绿),(橙,黄)、(橙,绿),(黄,绿)共6种情况.
(1)由题意可知,X=1,0
P(X=1)=$\frac{3}{6}=\frac{1}{2}$,
P(X=0)=$\frac{1}{2}$,
X的概率分布为

X01
P0.5          0.5
(2)记:“恰好摸出两个球是红色和绿色”为事件A,则A包含的结果有1种,
P(A)=$\frac{1}{6}$.
故答案为:
X01
P0.5          0.5

点评 本题主要考查了离散型随机变量的分布列的求解,解题的关键是准确分析概率模型,合理选择概率公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网