题目内容
(本小题满分12分)
已知数列
,
满足:
,当
时,
;对于任意的正整数
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942261573.png)
.设数列
的前
项和为
.
(Ⅰ)计算
、
,并求数列
的通项公式;
(Ⅱ)求满足
的正整数
的集合.
已知数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942105481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942136480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942152418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942167437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942199623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942230297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942261573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942277698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942292491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942230297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942323388.png)
(Ⅰ)计算
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942339344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942370352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942105481.png)
(Ⅱ)求满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942401628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942230297.png)
(Ⅰ)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942464574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942479828.png)
(1)由
,当
时,
;令
可求出![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942667433.png)
猜想
用数学归纳法证明.或者判断数列是等差数列求解;(2)由
和![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942745929.png)
,两式相减结合
可求出
错位相减法求出
,解不等式![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942823868.png)
,即
解得
.
(Ⅰ)在
中,取
,得
,又
,故
同样取
,可得
由
及
两式相减,可得
,
所以数列
的奇数项和偶数项各自成等差数列,公差为
,而
,
故
是公差为
的等差数列,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943228195.png)
……………………………………………… (6分)
(注:猜想
而未能证明的扣
分;用数学归纳法证明不扣分.)
(Ⅱ)在
中,令
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943431519.png)
由
与![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942745929.png)
两式相减,可得
,
化简,得
.
即当
时,
.
经检验
也符合该式,所以
的通项公式为
.
∴
.
.
两式相减,得
.
利用等比数列求和公式并化简,得
.
可见,对
,
.经计算,
,
注意到数列
的各项为正,故
单调递增,
所以满足
的正整数
的集合为
……………………………… (12分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942152418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942167437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942199623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942635531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942667433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942682430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942698567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229427131229.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942745929.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942760523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942698567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942807712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942823868.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942823868.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942869577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942885698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942916445.png)
(Ⅰ)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942199623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942947417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942963523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942152418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942667433.png)
同样取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943025396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942682430.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942199623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943088771.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943103533.png)
所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942105481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943150248.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943166486.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942105481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943213291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943228195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942464574.png)
(注:猜想
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942698567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943213291.png)
(Ⅱ)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943306929.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943322357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943431519.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229434471270.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942745929.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942760523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229435091828.png)
化简,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943525786.png)
即当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942167437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942807712.png)
经检验
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943587424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942136480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942807712.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229436491251.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229436652181.png)
两式相减,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229436811854.png)
利用等比数列求和公式并化简,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942823868.png)
可见,对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943727574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222943743510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232229437741250.png)
注意到数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942136480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222944039375.png)
所以满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942401628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942230297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222942479828.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目