题目内容
在四棱锥S-ABCD中,已知AB∥CD,SA=SB,SC=SD,E、F分别为AB、CD的中点.
(1)求证:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,求证:AB∥l.
(1)求证:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,求证:AB∥l.
(1)证明:由SA=SB,E为AB中点得SE⊥AB.由SC=SD,F为CD中点得SF⊥DC.又AB∥DC,∴AB⊥SF.
又SF∩SE=S,∴AB⊥平面SEF.
又∵AB?平面ABCD,
∴平面SEF⊥平面ABCD.
(2)∵AB∥CD,CD?面SCD,
∴AB∥平面SCD.
又∵平面SAB∩平面SCD=l,
根据直线与平面平行的性质定理得AB∥l.
又SF∩SE=S,∴AB⊥平面SEF.
又∵AB?平面ABCD,
∴平面SEF⊥平面ABCD.
(2)∵AB∥CD,CD?面SCD,
∴AB∥平面SCD.
又∵平面SAB∩平面SCD=l,
根据直线与平面平行的性质定理得AB∥l.
练习册系列答案
相关题目