题目内容
在△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为________.
有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A同学每科成绩不低于B同学,且至少有一科成绩比B高,则称“A同学比B同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生
A.
2
B.
3
C.
4
D.
5
把函数y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为
如果复数(b∈R)的实部与虚部互为相反数,则b=
0
1
-1
±1
函数的部分图象如图所示,则f(π)=
已知数列{an},{bn}满足:a1=3,当n≥2时,an-1+an=4n;对于任意的正整数n,b1+2b2+…+2n-1bn=nan.设{bn}的前n项和为Sn.
(Ⅰ)计算a2,a3,并求数列{an}的通项公式;
(Ⅱ)求满足13<Sn<14的n的集合.
阅读下面的程序框图,执行相应的程序,则输出的结果是
-2
-3
已知椭圆+=1(a>b>0)和直线L:-=1,椭圆的离心率e=,直线L与坐标原点的距离为.
(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.
如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是线段AD上一点,AM=AB,DM=DC,SM⊥AD.
(Ⅰ)证明:BM⊥平面SMC;
(Ⅱ)设三棱锥C-SBM与四棱锥S-ABCD的体积分别为V1与V,求的值.