题目内容
有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A同学每科成绩不低于B同学,且至少有一科成绩比B高,则称“A同学比B同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生
A.
2
B.
3
C.
4
D.
5
用ABC分别表示优秀、及格和不及格.显然语文成绩得A的学生最多只有1个,语文成绩得B的也最多只有1个,得C的也最多只有1个,因此学生最多只有3个.显然,(AC)(BB)(CA)满足条件,故学生最多3个
以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于
2π
π
1
已知直线l的参数方程为,(t为参数),圆C的参数方程为,(为常数).
(Ⅰ)求直线l和圆C的普通方程;
(Ⅱ)若直线I与圆C有公共点,求实数a的取值范围.
函数的部分图象如图所示.
(1)写出f(x)的最小正周期及图中x0、y0的值;
(2)求f(x)在区间上的最大值和最小值.
曲线(为参数)的对称中心
在直线y=2x上
在直线y=-2x上
在直线y=x-1上
在直线y=x+1上
把5件不同产品摆成一排,若产品A与产品C不相邻,则不同的摆法有________种.
对于数对序列P(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk-1(P),a1+a2+…+ak}表示Tk-1(P)和a1+a2+…+ak两个数中最大的数,
(1)对于数对序列P(2,5),P(4,1),求T1(P),T2(P)的值.
(2)记m为a,b,c,d四个数中最小值,对于由两个数对(a,b),(c,d)组成的数对序列P(a,b),(c,d)和(a,b).(c,d),试分别对m=a和m=d的两种情况比较T2(P)和T2()的大小.
(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论).
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(Ⅰ)应收集多少位女生样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4个小时的概率.
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:K2=
在△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为________.