题目内容
6.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=-$\frac{1}{4}$,3sinA=2sinB,则c=4.分析 由3sinA=2sinB即正弦定理可得3a=2b,由a=2,即可求得b,利用余弦定理结合已知即可得解.
解答 解:∵3sinA=2sinB,
∴由正弦定理可得:3a=2b,
∵a=2,
∴可解得b=3,
又∵cosC=-$\frac{1}{4}$,
∴由余弦定理可得:c2=a2+b2-2abcosC=4+9-2×$2×3×(-\frac{1}{4})$=16,
∴解得:c=4.
故答案为:4.
点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.
练习册系列答案
相关题目
17.“x>1”是“$lo{g_{\frac{1}{2}}}$(x+2)<0”的( )
A. | 充要条件 | B. | 充分而不必要条件 | ||
C. | 必要而不充分条件 | D. | 既不充分也不必要条件 |
1.执行如图所示的程序框图,则输出s的值为( )
A. | $\frac{3}{4}$ | B. | $\frac{5}{6}$ | C. | $\frac{11}{12}$ | D. | $\frac{25}{24}$ |