题目内容
【题目】已知函数
(1)求函数的定义域;
(2)判断函数的奇偶性。
【答案】(1){x|﹣1<x<1}(2)偶函数
【解析】
(1)要求函数f(x)+g(x)的定义域,我们可根据让函数解析式有意义的原则,构造不等式组,解不等式组即可得到函数f(x)+g(x)的定义域;
(2)要判断h(x)=f(x)+g(x)的奇偶性,我们根据奇偶性的定义,先判断其定义域是否关于原点对称,然后再判断f(﹣x)+g(﹣x)与f(x)+g(x)的关系,结合奇偶性的定义进行判断;
(1)f(x)+g(x)=+.
若要上式有意义,则,
即﹣1<x<1.
所以所求定义域为{x|﹣1<x<1}
(2)记h(x)=f(x)+g(x),定义域为{x|﹣1<x<1}
则h(﹣x)=f(﹣x)+g(﹣x)
=log2(﹣x+1)+log2(1+x)=h(x).
所以h(x)=f(x)+g(x)是偶函数.
练习册系列答案
相关题目
【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左,右焦点分别为,线段的中点分别为,且 是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过做直线交椭圆于两点,使,求直线的方程.
【题目】某个体经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成下表:
投资A商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
获纯利润(万元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.40 |
投资B商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
获纯利润(万元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算.请你帮助制定一下资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大利润(结果保留两个有效数字).