题目内容

【题目】已知数列{an}的前n项和为Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,数列{bn} 的前n项和为Tn , 若Tn≥tn2对n∈N*恒成立,则实数t的取值范围是

【答案】(﹣∞,﹣5]
【解析】解:n=1时,a1=3.n≥2时,an=Sn﹣Sn1=n2+2n﹣[(n﹣1)2+2(n﹣1)]=2n+1.n=1时也成立,∴an=2n+1. ∴bn=anan+1cos(n+1)π=(2n+1)(2n+3)cos(n+1)π,
n为奇数时,cos(n+1)π=1;n为偶数时,cos(n+1)π=﹣1.
因此n为奇数时,Tn=3×5﹣5×7+7×9﹣9×11+…+(2n+1)(2n+3)=3×5+4×(7+11+…+2n+1)=15+4× =2n2+6n+7.Tn≥tn2对n∈N*恒成立,
∴2n2+6n+7≥tn2 , t≤ + +2= ,∴t<2.
n为偶数时,Tn=3×5﹣5×7+7×9﹣9×11+…﹣(2n+1)(2n+3)=﹣4×(5+9+11+…+2n+1)=﹣2n2﹣6n.
∴Tn≥tn2对n∈N*恒成立,∴﹣2n2﹣6n≥tn2 , t≤﹣2﹣ ,∴t≤﹣5.
综上可得:t≤﹣5.
故答案为:(﹣∞,﹣5].
n=1时,a1=3.n≥2时,an=Sn﹣Sn1 , 可得an=2n+1.bn=anan+1cos(n+1)π=(2n+1)(2n+3)cos(n+1)π,n为奇数时,cos(n+1)π=1;n为偶数时,cos(n+1)π=﹣1.对n分类讨论,通过转化利用函数的单调性即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网