题目内容

2.已知函数$f(x)=Asin(ωx+ϕ)({x∈R,ω>0,A>0,0<ϕ<\frac{π}{2}})$的最大值为2,最小正周期为π,直线x=$\frac{π}{6}$是其图象的一条对称轴.
(1)求f(x)的解析式; 
(2)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的值域.

分析 (1)由函数的最值求出A,由周期求出ω,由图象的对称性求出φ的值,可得函数的解析式.
(2)由条件利用正弦函数的定义域和值域求得f(x)的值域.

解答 解:(1)∵函数$f(x)=Asin(ωx+ϕ)({x∈R,ω>0,A>0,0<ϕ<\frac{π}{2}})$的最大值为2,∴A=2;
根据最小正周期为$\frac{2π}{ω}$=π,可得ω=2;
再根据直线x=$\frac{π}{6}$是其图象的一条对称轴,可得2×$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈z,可得φ=kπ+$\frac{π}{6}$,故φ=$\frac{π}{6}$,
故f(x)=2sin(2x+$\frac{π}{6}$).
(2)当$x∈[{0,\frac{π}{2}}]$时,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],∴f(x)∈[-1,2].

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由图象的对称性求出φ的值,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网