题目内容

【题目】如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m
(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为
(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.

【答案】
(1)解:连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点G,

连接OG,因为PC∥平面BDD1B1,平面BDD1B1∩平面APC=OG,

故OG∥PC,所以,OG= PC=

又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1

故∠AGO是AP与平面BDD1B1所成的角.

在Rt△AOG中,tan∠AGO= ,即m=

所以,当m= 时,直线AP与平面BDD1B1所成的角的正切值为4


(2)解:可以推测,点Q应当是AICI的中点,当是中点时

因为D1O1⊥A1C1,且 D1O1⊥A1A,A1C1∩A1A=A1

所以 D1O1⊥平面ACC1A1

又AP平面ACC1A1,故 D1O1⊥AP.

那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直.


【解析】(1)连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点,连接OG,证明AO⊥平面BDD1B1,说明∠AGO是AP与平面BDD1B1所成的角.在Rt△AOG中,利用直线AP与平面BDD1B1所成的角的正切值为4 .求出m的值.(2)点Q应当是AICI的中点,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,通过证明 D1O1⊥平面ACC1A1,D1O1⊥AP.利用三垂线定理推出结论.
【考点精析】掌握空间角的异面直线所成的角是解答本题的根本,需要知道已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网