题目内容

【题目】已知数列满足a1man+1 (k∈N*r∈R),其前n项和为.

(1)当mr满足什么关系时,对任意的n∈N*,数列{an}都满足an+2an?

(2)对任意实数mr,是否存在实数pq,使得{a2n+1p}与{a2nq}是同一个等比数列.若存在,请求出pq满足的条件;若不存在,请说明理由;

(3)当mr=1时,若对任意的n∈N*,都有Snλan,求实数λ的最大值.

【答案】(1)mr=0;(2)见解析;(3)1.

【解析】试题分析:(1)a3a1,得mr=0,再证mr=0满足题意即可;

(2)依题意,a2n+1a2nr=2a2n-1r,则a2n+1r=2(a2n-1r),当mr≠0时,{a2n+1r}是等比数列,由题意可得pr,q=2r,若mr=0,则不存在实数pq,使得{a2n+1p}与{a2nq}是等比数列;

(3)当mr=1时,由(2)可得a2n-1=2n-1,a2n=2n+1-2,由分组求和得

试题解析:

(1)由题意得a1ma2=2a1=2ma3a2r=2mr

a3a1,得mr=0.

mr=0时,因为an+1 (k∈N*),

所以a1a3=…=ma2a4=…=2m,故对任意的n∈N*,数列{an}都满足an+2an. 当n=2k时,Sn=3(2k+1k-2),再由的单调性求最小值即可得λ,当n=2k-1时,SnS2ka2k=2k+2-3k-4,再由的单调性求最小值即可得λ,从而得解.

即当实数mr满足mr=0时,符合题意.

(2)存在.依题意,a2n+1a2nr=2a2n-1r

a2n+1r=2(a2n-1r),

因为a1rmr

所以当mr≠0时,{a2n+1r}是等比数列,且a2n+1r=(a1r)2n=(mr)2n.

为使{a2n+1p}是等比数列,则pr.

同理,当mr≠0时,a2n+2r=(mr)2n,{a2n+2r}是等比数列,欲使{a2nq}是等比数列,则q=2r.

综上所述,

①若mr=0,则不存在实数pq,使得{a2n+1p}与{a2nq}是等比数列;

②若mr≠0,则当pq满足q=2p=2r时,{a2n+1p}与{a2nq}是同一个等比数列.

(3)当mr=1时,由(2)可得a2n-1=2n-1,a2n=2n+1-2,

n=2k时,ana2k=2k+1-2,

SnS2k=(21+22+…+2k)+(22+23+…+2k+1)-3k

=3(2k+1k-2),所以=3.

ck

ck+1ck<0,

所以,即λ.

n=2k-1时,ana2k-1=2k-1,

SnS2ka2k=3(2k+1k-2)-(2k+1-2)=2k+2-3k-4,

所以=4-,同理可得≥1,即λ≤1.

综上所述,实数λ的最大值为1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网