题目内容
【题目】已知函数f(x)=( )x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1﹣x2),则关于函数y=h(x)的下列4个结论: ①函数y=h(x)的图象关于原点对称;
②函数y=h(x)为偶函数;
③函数y=h(x)的最小值为0;
④函数y=h(x)在(0,1)上为增函数
其中,正确结论的序号为 . (将你认为正确结论的序号都填上)
【答案】②③④
【解析】解:∵函数f(x)=( )x的图象与函数y=g(x)的图象关于直线y=x对称,
∴g(x)= ,
∴h(x)=g(1﹣x2)= ,
故h(﹣x)=h(x),
即函数为偶函数,函数图象关于y轴对称,
故①错误;②正确;
当x=0时,函数取最小值0,故③正确;
当x∈(0,1)时,内外函数均为减函数,故函数y=h(x)在(0,1)上为增函数,故④正确;
所以答案是:②③④
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
【题目】某校为了解高三年级不同性别的学生对取消艺术课的态度(支持或反对),进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为 ,通过对被抽取学生的问卷调查,得到如下2x2列联表:
支持 | 反对 | 总计 | |
男生 | 30 | ||
女生 | 25 | ||
总计 |
(Ⅰ)完成列联表,并判断能否有99.9%的把握认为态度与性别有关?
(Ⅱ)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式及临界表:K2=
P(K2≥k0) | 0.10 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706% | 3.841 | 6.635 | 7.879 | 10.828 |