题目内容

8.已知函数f(x)=x2-cosx,对于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下条件:①x1>x2;②$x_1^2>x_2^2$;③|x1|>x2,其中能使f(x)1>f(x2)恒成立的条件序号是(  )
A.B.C.D.以上都不对

分析 先研究函数的性质,观察知函数是个偶函数,由于f′(x)=2x+sinx,在[0,$\frac{π}{2}$]上f′(x)>0,可推断出函数在y轴两边是左减右增,此类函数的特点是自变量离原点的位置越近,则函数值越小,欲使f(x1)>f(x2)恒成立,只需x1,到原点的距离比x2,到原点的距离大即可,由此可得出|x1|>|x2|,在所给三个条件中找符合条件的即可

解答 解:函数f(x)为偶函数,f′(x)=2x+sinx,
当0<x≤$\frac{π}{2}$时,0<sinx≤1,0<2x≤π,
∴f′(x)>0,函数f(x)在[0,$\frac{π}{2}$]上为单调增函数,
由偶函数性质知函数在[-$\frac{π}{2}$,0]上为减函数.
当x12>x22时,得|x1|>|x2|≥0,
∴f(|x1|)>f(|x2|),由函数f(x)在上[-$\frac{π}{2}$,$\frac{π}{2}$]为偶函数得f(x1)>f(x2),故②成立.
∵$\frac{π}{3}$>-$\frac{π}{3}$,而f($\frac{π}{3}$)=f($\frac{π}{3}$),
∴①不成立,同理可知③不成立.
故选:B.

点评 本题考查函数的性质奇偶性与单调性,属于利用性质推导出自变量的大小的问题,本题的解题方法新颖,判断灵活,方法巧妙,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网