ÌâÄ¿ÄÚÈÝ
3£®Ä³ÒµÓà¾ãÀÖ²¿ÓÉ10ÃûƹÅÒÇò¶ÓÔ±ºÍ5ÃûÓðëÇò¶ÓÔ±×é³É£¬ÆäÖÐƹÅÒÇò¶ÓÔ±ÖÐÓÐ4ÃûÅ®¶ÓÔ±£»ÓðëÇò¶ÓÔ±ÖÐÓÐ2ÃûÅ®¶ÓÔ±£¬ÏÖ²ÉÓ÷ֲã³éÑù·½·¨£¨°´Æ¹ÅÒÇò¶ÓºÍÓðëÇò¶Ó·Ö²ã£¬ÔÚÿһ²ãÄÚ²ÉÓüòµ¥Ëæ»ú³éÑù£©´ÓÕâ15ÈËÖй²³éÈ¡3Ãû¶ÓÔ±²Î¼ÓÒ»Ïî±ÈÈü£®£¨¢ñ£©ÇóËù³éÈ¡µÄ3Ãû¶ÓÔ±ÖÐƹÅÒÇò¶ÓÔ±¡¢ÓðëÇò¶ÓÔ±µÄÈËÊý£»
£¨¢ò£©Çó´ÓƹÅÒÇò¶Ó³éÈ¡µÄ¶ÓÔ±ÖÐÖÁÉÙÓÐ1ÃûÅ®¶ÓÔ±µÄ¸ÅÂÊ£»
£¨¢ó£©¼Ç¦ÎΪ³éÈ¡µÄ3Ãû¶ÓÔ±ÖÐÄжÓÔ±ÈËÊý£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
·ÖÎö £¨¢ñ£©¸ù¾Ý·Ö²ã³éÑùµÄ¶¨Òå°´ÕÕ±ÈÀý³éÈ¡¼´¿É£®
£¨¢ò£©Éè¡°´ÓƹÅÒÇò¶Ó³éÈ¡µÄ¶ÓÔ±ÖÐÖÁÉÙÓÐ1ÃûÅ®¶ÓÔ±¡±ÎªÊ¼þA£¬ÀûÓ󬼸ºÎ·Ö²¼ÇóµÃ¸ÅÂÊ
£¨¢ó£©Ð´³öËæ»ú±äÁ¿¦ÎµÄËùÓÐÇé¿ö£¬¸ù¾Ý³¬¼¸ºÎ·Ö²¼Ð´³ö¸÷×Ô¸ÅÂÊÇóµÃ·Ö²¼ÁÐÆÚÍû£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö13·Ö£©
½â£º£¨¢ñ£©³éȡƹÅÒÇò¶ÓÔ±µÄÈËÊýΪ$3¡Á\frac{10}{15}=2$ÈË£»
ÓðëÇò¶ÓÔ±µÄÈËÊýΪ$3¡Á\frac{5}{15}=1$ÈË£®¡..£¨2·Ö£©
£¨¢ò£©Éè¡°´ÓƹÅÒÇò¶Ó³éÈ¡µÄ¶ÓÔ±ÖÐÖÁÉÙÓÐ1ÃûÅ®¶ÓÔ±¡±ÎªÊ¼þA£¬
Ôò$P£¨A£©=\frac{C_6^1C_4^1+C_4^2}{{C_{10}^2}}=\frac{2}{3}$£¬
ËùÒÔ´ÓƹÅÒÇò¶Ó³éÈ¡µÄ¶ÓÔ±ÖÐÖÁÉÙÓÐ1ÃûÅ®¶ÓÔ±µÄ¸ÅÂÊΪ$\frac{2}{3}$£®¡..£¨6·Ö£©
£¨¢ó£©¦Î=0£¬1£¬2£¬3
P£¨¦Î=0£©=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{10}^{2}{C}_{5}^{1}}=\frac{4}{75}$
P£¨¦Î=1£©=$\frac{{C}_{6}^{1}{C}_{4}^{1}{C}_{2}^{1}}{{C}_{10}^{2}{C}_{5}^{1}}+\frac{{C}_{4}^{2}{C}_{3}^{1}}{{C}_{10}^{2}{C}_{5}^{1}}=\frac{22}{75}$
P£¨¦Î=2£©=$\frac{{C}_{6}^{2}{C}_{2}^{1}}{{C}_{10}^{2}{C}_{5}^{1}}+\frac{{C}_{6}^{1}{C}_{4}^{1}{C}_{3}^{1}}{{C}_{10}^{2}{C}_{5}^{1}}=\frac{34}{75}$£¬
P£¨¦Î=3£©=$\frac{C_6^2•C_3^1}{{C_{10}^2•C_5^1}}=\frac{1}{5}$£®
¦ÎµÄ·Ö²¼ÁÐΪ
¦Î | 0 | 1 | 2 | 3 |
P | $\frac{4}{75}$ | $\frac{22}{75}$ | $\frac{34}{75}$ | $\frac{1}{5}$ |
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é³¬¼¸ºÎ·Ö²¼µÄÓ¦ÓúÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÆÚÍû£¬ÊôÖеµÌâÐÍ£¬¸ß¿¼³£¿¼ÌâÐÍ£®
A£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» | B£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | ||
C£® | Ïò×óƽÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» | D£® | Ïò×óƽÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» |
A£® | $\frac{1}{10}$£¼x1x2£¼$\frac{1}{e}$ | B£® | $\frac{1}{e}$£¼x1x2£¼1 | C£® | 1£¼x1x2£¼e | D£® | x1x2£¾e |
A£® | [-$\frac{\sqrt{3}}{3}$£¬$\frac{\sqrt{3}}{3}$] | B£® | £¨-¡Þ£¬-$\frac{\sqrt{3}}{3}$]¡È[$\frac{\sqrt{3}}{3}$£¬+¡Þ£© | C£® | $[{-\sqrt{3}£¬\sqrt{3}}]$ | D£® | $£¨{-¡Þ£¬-\sqrt{3}}]¡È[{\sqrt{3}£¬+¡Þ}£©$ |