题目内容

16.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
(1)当a=10时,求A∩B,A∪B;
(2)求能使A⊆B成立的a的取值范围.

分析 (Ⅰ)当a=10时,A={21≤x≤25},B={x|3≤x≤22},由此能求出A∩B和A∪B.
(Ⅱ)由A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},且A⊆B,知$\left\{\begin{array}{l}{2a+1≥3}\\{3a-5≤22}\\{2a+1≤3a-5}\end{array}\right.$,由此能求出a的取值范围.

解答 解:(Ⅰ)当a=10时,A={21≤x≤25},B={x|3≤x≤22},
∴A∩B={x|21≤x≤22},
A∪B={x|3≤x≤25}.
(Ⅱ)∵A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},且A⊆B,
∴$\left\{\begin{array}{l}{2a+1≥3}\\{3a-5≤22}\\{2a+1≤3a-5}\end{array}\right.$,
解得6≤a≤9.
∴a的取值范围是[6,9]

点评 本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网