题目内容
16.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},(1)当a=10时,求A∩B,A∪B;
(2)求能使A⊆B成立的a的取值范围.
分析 (Ⅰ)当a=10时,A={21≤x≤25},B={x|3≤x≤22},由此能求出A∩B和A∪B.
(Ⅱ)由A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},且A⊆B,知$\left\{\begin{array}{l}{2a+1≥3}\\{3a-5≤22}\\{2a+1≤3a-5}\end{array}\right.$,由此能求出a的取值范围.
解答 解:(Ⅰ)当a=10时,A={21≤x≤25},B={x|3≤x≤22},
∴A∩B={x|21≤x≤22},
A∪B={x|3≤x≤25}.
(Ⅱ)∵A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},且A⊆B,
∴$\left\{\begin{array}{l}{2a+1≥3}\\{3a-5≤22}\\{2a+1≤3a-5}\end{array}\right.$,
解得6≤a≤9.
∴a的取值范围是[6,9]
点评 本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目
4.棱长为2的正四面体ABCD在空间直角坐标系中移动,但保持点A、B分别在x轴、y轴上移动,则棱CD的中点E到坐标原点O的最远距离为( )
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$+1 | D. | $\sqrt{2}$+1 |
1.参数方程为$\left\{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=2}\end{array}\right.$(t为参数)表示的曲线是( )
A. | 两条射线 | B. | 两条直线 | C. | 一条射线 | D. | 一条直线 |