题目内容
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差摄氏度 | 10 | 11 | 13 | 12 | 8 |
发芽颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的3组数据恰好是连续天的数据(表示数据来自互不相邻的三天),求的分布列及期望:
(2)根据12月2日至4日数据,求出发芽数关于温差的线性回归方程.由所求得线性回归方稻得到的估计数据与剩下的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?
附:参考公式:.
【答案】(1)见解析(2)见解析
【解析】
(1)的可能取值有,用古典概型概率计算公式,计算出分布列,并求出数学期望.(2)利用回归直线方程计算公式计算出回归直线方程,并判断出回归直线方程是否可靠.
解:(1)由题意知,;
则, ,
∴;,
∴的分布列为:
0 | 2 | 3 | |
数学期望为;
(2)由题意,计算,
,
所以
∴关于的线性回归方程为;
当时,,且,
当时,,且
∴所求得线性回归方程是可靠的
练习册系列答案
相关题目