题目内容
【题目】设l为曲线C:y= 在点(1,0)处的切线.
(Ⅰ)求l的方程;
(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.
【答案】解:(Ⅰ)∵y=
∴
∴l的斜率k=y′|x=1=1
∴l的方程为y=x﹣1
(Ⅱ)证明:令f(x)=x(x﹣1)﹣lnx,(x>0)
曲线C在直线l的下方,即f(x)=x(x﹣1)﹣lnx>0,
则f′(x)=2x﹣1﹣ =
∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,又f(1)=0
∴x∈(0,1)时,f(x)>0,即 <x﹣1
x∈(1,+∞)时,f(x)>0,即 <x﹣1
即除切点(1,0)之外,曲线C在直线l的下方
【解析】(Ⅰ)求出切点处切线斜率,代入代入点斜式方程,可以求解;(Ⅱ)利用导数分析函数的单调性,进而分析出函数图象的形状,可得结论.
练习册系列答案
相关题目
【题目】稳定房价是我国今年实施宏观调控的重点,国家最近出台的一系列政策已对各地的房地产市场产生了影响.北京市某房地产介绍所对本市一楼群在今年的房价作了统计与预测:发现每个季度的平均单价y(每平方米面积的价格,单位为元)与第x季度之间近似满足:y=500sin(ωx+)+9500 (>0),已知第一、二季度平均单价如下表所示:
x | 1 | 2 | 3 |
y | 10000 | 9500 | ? |
则此楼群在第三季度的平均单价大约是 ( )
A.10000元
B.9500元
C.9000元
D.8500元