题目内容

3.设变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,则目标函数z=2x+3y的最大值为(  )
A.11B.10C.9D.12

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式对应的平面区域(阴影部分),
由z=2x+3y,得y=$-\frac{2}{3}x+\frac{z}{3}$,
平移直线y=$-\frac{2}{3}x+\frac{z}{3}$,由图象可知当直线y=$-\frac{2}{3}x+\frac{z}{3}$经过点A时,直线y=$-\frac{2}{3}x+\frac{z}{3}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x=0}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=4}\end{array}\right.$,
即A(0,4).
此时z的最大值为z=3×4=12,
故选:D.

点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网