题目内容
(本小题13分)已知数列{an}的前n项和Sn = 2an– 3×2n + 4 (n∈N*)
(1)求数列{an}的通项公式an;(2)设Tn为数列{Sn – 4}的前n项和,试比较Tn与14的大小.
(1)求数列{an}的通项公式an;(2)设Tn为数列{Sn – 4}的前n项和,试比较Tn与14的大小.
(Ⅰ)an = (n – )2n,n∈N* (Ⅱ) 当n = 1,2时Tn<14.当n≥3时, Tn>14.
(1)由a1 = S1 = 2a1 – 3×2 + 4得a1 = 2,……1分
由已知,得Sn + 1 – Sn = 2 (an + 1 – an) – (2n + 1 – 2n) 即an + 1 = 2an + 3×2n两边同除以2n + 1得即 ∴数列{}是以= 1为首项,为公差的等差数列.
∴=" 1" + (n – 1) × 即an = (n – )2n,n∈N*.……6分
(2)∵Sn– 4 = 2an– 3×2n = (3n – 4)·2n.∴Tn = –1×2 + 2·22 + 5·23 + …+ (3n – 4)·2n①2Tn = –1×22 + 2×23 + … + (3n – 7)·2n + (3n – 4)·2n + 1 ②
① – ②得 –Tn = –2 + 3(22 + 23 + …+2n) – (3n – 4)·2n + 1
= –2 + 3× – (3n – 4)·2n + 1 =" –14" + (14 – 6n)·2n ……10分
∴Tn = 14 – (14 – 6n)·2n.∵当n = 1,2时,14 – 6n>0
∴Tn<14.当n≥3时,14 – 6n>0 ∴Tn>14.……13分
由已知,得Sn + 1 – Sn = 2 (an + 1 – an) – (2n + 1 – 2n) 即an + 1 = 2an + 3×2n两边同除以2n + 1得即 ∴数列{}是以= 1为首项,为公差的等差数列.
∴=" 1" + (n – 1) × 即an = (n – )2n,n∈N*.……6分
(2)∵Sn– 4 = 2an– 3×2n = (3n – 4)·2n.∴Tn = –1×2 + 2·22 + 5·23 + …+ (3n – 4)·2n①2Tn = –1×22 + 2×23 + … + (3n – 7)·2n + (3n – 4)·2n + 1 ②
① – ②得 –Tn = –2 + 3(22 + 23 + …+2n) – (3n – 4)·2n + 1
= –2 + 3× – (3n – 4)·2n + 1 =" –14" + (14 – 6n)·2n ……10分
∴Tn = 14 – (14 – 6n)·2n.∵当n = 1,2时,14 – 6n>0
∴Tn<14.当n≥3时,14 – 6n>0 ∴Tn>14.……13分
练习册系列答案
相关题目