题目内容
【题目】设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为 (单位:元).
(1)写出楼房每平方米的平均综合费用关于建造层数的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
【答案】(1)y=560+48x+ (x≥10,x∈N*);(2)该楼房建造15层时,可使楼房每平方米的平均综合费用最少,最少值为2000元.
【解析】试题分析:(1)由已知得,楼房每平方米的平均综合费为每平方米的平均建筑费用为560+48x与平均地皮费用的和,由已知中某单位用2160万元购得一块空地,计划在该地块上建造一栋x层,每层2000平方米的楼房,我们易得楼房平均综合费用y关于建造层数x的函数关系式;(2)由(1)中的楼房平均综合费用y关于建造层数x的函数关系式,要求楼房每平方米的平均综合费用最小值,利用基本不等式,求最小值.
试题解析:
(1)依题意得y=(560+48x)+
=560+48x+(x≥10,x∈N*).
(2)∵x>0,∴48x+≥2=1440,
当且仅当48x=,即x=15时取到“=”,
此时,平均综合费用的最小值为560+1440=2000(元).
∴当该楼房建造15层时,可使楼房每平方米的平均综合费用最少,最少值为2000元.
练习册系列答案
相关题目