题目内容
13.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1上的一点P到F(3,0)的距离为6,O为坐标原点,$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OF}$),则|$\overrightarrow{OQ}$|=( )A. | 1 | B. | 5 | C. | 2或5 | D. | 1或5 |
分析 分类讨论,利用双曲线的第二定义,求出P的坐标,利用向量知识,即可求解.
解答 解:设P(x,y),则
P在右支上,F(3,0)右是焦点,右准线方程为x=$\frac{4}{3}$,
∴$\frac{6}{x-\frac{4}{3}}=\frac{3}{2}$,∴x=$\frac{16}{3}$,∴y=±$\frac{5}{3}\sqrt{11}$,
∵O为坐标原点,$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OF}$),∴|$\overrightarrow{OQ}$|=$\sqrt{(\frac{25}{6})^{2}+(\frac{5\sqrt{11}}{6})^{2}}$=5;
P在左支上,(-3,0)是左焦点,左准线方程为x=-$\frac{4}{3}$,
∴$\frac{8-6}{-\frac{4}{3}-x}=\frac{3}{2}$,∴x=-$\frac{8}{3}$,∴y=±$\frac{\sqrt{35}}{3}$,
∵O为坐标原点,$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OF}$),∴|$\overrightarrow{OQ}$|=$\sqrt{(\frac{1}{6})^{2}+(\frac{\sqrt{35}}{6})^{2}}$=1.
故选:D.
点评 本题考查双曲线的方程于性质,考查分类讨论的数学思想,考查向量知识的运用,属于中档题.
练习册系列答案
相关题目
4.下列条件中可以确定两条直线平行的是( )
A. | 垂直同一条直线的两条直线 | B. | 平行同一平面的两条直线 | ||
C. | 平行同一条直线的两条直线 | D. | 和同一平面所成角相等 |
2.已知θ是三角形的-个内角,且sin($\frac{π}{2}$-θ)=$\frac{\sqrt{2}}{2}$,则角θ等于( )
A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{4}$或$\frac{3π}{4}$ | D. | $\frac{π}{3}$ |