题目内容
(本小题满分12分)
如图,直三棱柱中,AC=BC=1, AAi="3" D为CCi上的点,二面角A-A1B-D的余弦值为
(I )求证:CD=2;
(II)求点A到平面A1BD的距离.
如图,直三棱柱中,AC=BC=1, AAi="3" D为CCi上的点,二面角A-A1B-D的余弦值为
(I )求证:CD=2;
(II)求点A到平面A1BD的距离.
(Ⅰ)取AB中点E,A1B1中点G,连结EG,交A1B于F,连结CE、C1G,作DM⊥GE于M.
∵平面C1GEC⊥平面A1ABB1,∴DM⊥平面A1ABB1.
作MN⊥A1B于N,连结DN,则MN为DN在平面A1ABB1上的射影,则∠DNM为二面角B1-A1B-D的平面角.……………………………………………………………4分
∴cos∠DNM=,DM=C1G=,∴MN=.
∵sin∠MFN==,∴MF=,∴DC=2.…………………………7分
(Ⅱ)在△A1BD中,A1D=,BD=,A1B=.
cos∠A1DB==-,sin∠A1DB=,
S△A1BD=A1D·BDsin∠A1DB=,
又S△A1AB=××3=,点D到面A1AB的距离DM=CE=,
设点A到平面A1BD的距离为d,则
S△A1BD·d=S△A1AB×,∴d=.
故点A到平面A1BD的距离为.………………………………………………12分
∵平面C1GEC⊥平面A1ABB1,∴DM⊥平面A1ABB1.
作MN⊥A1B于N,连结DN,则MN为DN在平面A1ABB1上的射影,则∠DNM为二面角B1-A1B-D的平面角.……………………………………………………………4分
∴cos∠DNM=,DM=C1G=,∴MN=.
∵sin∠MFN==,∴MF=,∴DC=2.…………………………7分
(Ⅱ)在△A1BD中,A1D=,BD=,A1B=.
cos∠A1DB==-,sin∠A1DB=,
S△A1BD=A1D·BDsin∠A1DB=,
又S△A1AB=××3=,点D到面A1AB的距离DM=CE=,
设点A到平面A1BD的距离为d,则
S△A1BD·d=S△A1AB×,∴d=.
故点A到平面A1BD的距离为.………………………………………………12分
略
练习册系列答案
相关题目